
FusionBot Data-Extraction Setup / Documentation

Overview

FusionBot’s data-extraction based indexing provides for more accurate indexing and 
results precision, as well as the ability to custom define specific "database" like fields 
for displaying, searching, and sorting within the search results.

Data-extraction based indexing works by partnering with our customer to generate a 
custom “extract file” of their items to be made searchable, rather than "parsing" 
content from HTML pages through the use of our crawler.  The creation of an extract 
file provides for a more robust and accurate representation of your items, while at 
the same time reducing the load and bandwidth requirements on your hosting 
provider / web server.  

We can work with our customer to either remotely, from FusionBot’s side, extract the 
requested data directly from their database in the format / syntax required, provided 
the customer is able to grant FusionBot permission / remote access, or, your 
technical team can create a custom extract file / script and host this file / script on 
your server for FusionBot to retrieve on a scheduled basis.  The basis of this 
document is to provide details for how to extract / construct the data from your 
database in a format required for FusionBot to read / build your index upon.

When utilizing the data-extraction method, the extract file allows you to define your 
own custom fields for searching and sorting your search results upon.  In addition,
the extract file can contain custom fields in order to re-display specific database type 
values as part of each matching result, such as an item’s price, product number, 
brand, minimum order quantities, etc.  The end result is the appearance of a more 
database-like search result, while benefiting from the advanced performance, 
features, and functionality that an index-based search solution provides.

Syntax

The extract file ALWAYS consists of exactly 4 lines per product (item) to be included 
in your index, consisting of the following:

Line 1: URL of Product Page
Line 2: Page Title
Line 3: Page Description
Line 4: Page Body / Content

If you were to have 4 items in your entire database, your file MUST contain exactly 
16 lines, 4 for each item.

Tabs and new-lines must be removed from each entry prior to writing the record.  
Tabs and new-lines (chr(10)) are delimiters, that is, they define each line (or field) in 
your file, and therefore cannot be included within each line of your file.

Carriage returns must also be eliminated (chr(13)).



There is only one exception for inclusion of a tab anywhere in the export file, and this 
is when additional (optional) tags / indicators are assigned to a page on the URL line 
(line 1), example:

http://www.logika.net/    <TYP>PDF 

The indicators are XML-like attributes that assign various optional settings (values) 
to a page, such as:

LEN - Length of Page (bytes)
LMD - Last Modified Date
TYP - File Type (pdf,rtf,ppt,doc,xls,txt)
CCH - Cache File Position
TNI - Thumbnail Image
TNW - Thumbnail Width
TNH - Thumbnail Height
TNU - Thumbnail Url/Href
TNT - Thumbnail Target
REL - Related/Region

The above indicators are FusionBot "reserved" indicators that cannot be used 
elsewhere on line 1.  The reason this is important is that, in addition to the above 
indicators, you can custom define any of your own 3 letter xml-like indicators for 
passing in custom "database like" values to be part of each item’s (page's) search 
result, such as the display of a price value for each item, or the display and 
searchability of an product id for an item.  For example, line 1 of an extract file could 
appear as:

http://site.com/index.asp?id=5 <prc>24.95<pid>1557663327<brd>AMCO

For this above URL, you are assigning a price, a product id, and a brand to be 
associated with this particular item, so that visitors can subsequently search or sort 
based on these values, or so that you may re-display these values next to each item 
in your results.  It is difficult, if not impossible, to achieve similar results when using 
a spider to simply crawl your pages.

It is also important to note that for ANY of the 4 individual lines that ALL HTML 
based tags MUST be removed from your text before including this text in your 
extract output.  Therefore, if your database includes HTML characters / entities 
within your product title or description fields, you must write a function to strip these 
tags out before writing this data to lines 1,2,3 or 4 of your extract file.

Think of the file that you are building as essentially the same type of file that the 
FusionBot spider builds during its crawl of your site.  Since you are eliminating the 
use of the FusionBot crawler using the extract approach, the extract file you create 
needs to be in the same format that would be created had the FusionBot spider 
indexed your site instead.  During FusionBot’s crawl process, your HTML pages are 
parsed and all text is extracted for creating your searchable index upon, and all 
HTML tags are discarded.

Once you have built your custom extract script, you can either schedule your script 
to run, which will then place a static extract file in a specific location on your web 
server, or, you can point FusionBot directly to the script itself, so that when our 

http://site.com/index.asp?id=5


“spider” initiates a connection to your server, FusionBot can call this script in order to 
dynamically generate the data-extraction based content on the fly.  Either way, 
during the initial setup of your FusionBot account, we configure your account to look 
for your extraction file or script in the location you specify.  Based on the existence 
of such a parameter in our system, FusionBot therefore knows to request an 
extraction of your content, rather than crawling your site using our spider-based 
indexer.

Search Results Configuration

Now that your extract file has been generated and your index has been built, you 
now need to be able to format your search results using the custom FusionBot 
template language / process.  Details of how the FusionBot template process works 
can be found within our Template Documentation PDF.

In reviewing the Template Documentation you will see that FusionBot represents 
dynamic search results content, which gets swapped out in real-time, during a query, 
using what we call “template object tags”.  These object tags begin with either 
$LGK_ or $RES_.  

For example, to display the TITLE of a particular item in your search results, your 
template contains the tag $RES_TITLE, and, to display your item’s description, the 
tag used is $RES_DESCR.

The above are reserved values defined by FusionBot for displaying these common 
fields in your search results, as extracted from your HTML pages when indexing, or in 
the above example, as extracted from Lines 2 & 3 for each item in your extract file.

The reason this is important is to therefore understand how to re-display the 
“custom” values you’ve assigned to each item after the tab in Line 1 of your extract 
file.  For example, in the sample Line 1 above we specified:

http://site.com/index.asp?id=5 <prc>24.95<pid>1557663327<brd>AMCO

For an item with a URL on your site of:

http://site.com/index.asp?id=5

And therefore, within your FusionBot template, to display price, product id, and 
brand for each of your items, you would place the FusionBot object tags:

$RES_PRC, $RES_PID, and $RES_BRD

In the location you want these values to display for each item within your results.

Wherever in your template you wish to replace the value of a custom 3-letter tag 
assigned via Line 1 in your extract file, simply construct the object tag as 
$RES_XXX, where XXX is the name of the 3 letter indicator assigned.

Search Filters Configuration

Data-extract customers can also exploit the custom values assigned to each item via 
Line 1’s XML-like indicators to enable visitors to “filter” their results by specific price 
ranges, product categories, brands, etc.

By doing so, visitors can further refine the scope of their results by “browsing” within 
categories.  Filters enable you to display the total number of items that fit within a 

http://www.fusionbot.com/pdfs/template_documentation.pdf
http://site.com/index.asp?id=5


specific range / category you assign, that users can then click-into to narrow their 
results based on their selected criteria.

Following is an example screen capture of the search filters feature:
S

e
a
rc

h
F
il

te
rs

Figure 1

To enable search filters based on any of the fields assigned in Line 1 of your extract 
file, take note of the names of the 3 letter XML-like indicators assigned to each field, 
and enter the value for each indicator you wish to create a filter upon, separated by 
a comma, in your FusionBot account by selecting the ‘search filters’ link from the 
‘customization’ tab.

Following is a sample entry in the search filter form within the FusionBot account 
corresponding to the output shown in figure 1 above:

Figure 2



Each filter entry MUST be delimited by a comma, and MAY contain up to three types 
of attributes, in any order. The characters surrounding the values you are attempting 
to set define the type of attribute.  The “surround characters” can be parenthesis, 
brackets, or braces, with the following meaning:

Surround Characters Meaning
() Parentheses RANGE: For numeric fields in your extract file, enables you to 

specify a range for which each item in your results should be 
assigned.  The most common use is to display a price range 
filter, enabling visitors to view items only within the price range 
they select based on the ranges you define using this option.  
The last range option should contain a single value followed by 
a plus sign, in order to encompass all items assigned a value 
exceeding the highest value specified.

Example: PRC(0-9.99)(10-99.99)(100+)
{} Braces Prefix: Enables the assignment of a prefix to be displayed for 

any configured filter.  The most common use is to assign a 
currency symbol to your filter’s display range, since the 
numeric values in your extract file MUST NOT contain any 
alphabetic characters in order to be considered numeric, and 
thus provide for the ability to create a numeric range for 
display. 

Example: PRC{$}(0-99.99)(100-199.99)(200+)

The above example creates a filter for display similar to the 
following:

By using the braces prefix {$}, when the filter values / ranges 
print, FusionBot automatically inserts the value between the 
braces to the front of each range value.

[] Brackets Node Name:  When visitors select a particular filter in their
results, a visual “cue” can be displayed specifying the 
“collection” of filters that have been selected.  Visitors can then 
elect to “click out” of specific filters as desired.  The display text 
used for the top-level node name is assigned between the 
brackets.  The object tag $LGK_FILTERTAG controls where in 
your results page the visual cue displays.

Example: CAT[Home],STO[All Stores],OFT[All Offers]

Table 1



Figure 3 below displays the result of “browsing” into the filters: Category, Store, and 
Offer Type, on the left-hand side, and the resultant display, via the 
$LGK_FILTERTAG, of the nodes selected.  Please note that nodes selected will ONLY
be displayed for a particular filter if a top-level node name has been assigned via the 
brackets attribute.

Top-level node name assigned via
the brackets [], followed by the actual
filter (category) selected.  Inserted via 
the  object tag.$LGK_FILTERTAG

Figure 3

For alphabetic fields, such as Category (CTG) in the above example, all that MUST
be entered is the 3-letter indicator.  The output sort order for alphabetic listings will 
be first by number of matches then by name.

Once your entries are saved in your search filters form, you will then need to modify 
your search results template to incorporate the necessary template object tags for 
displaying your filter options.

Filter object tags ALWAYS begin with $FLT_, followed by the 3-letter indicator 
assigned to the particular filter.  Thus, wherever you wish to display within your 
search results the filter data for store (STO), or manufacturer (MNF), for example, as 
shown in figures 1 & 3, you would insert into your template the custom object tags:

$FLT_STO
$FLT_MNF

The default maximum number of options (rows) to display per filter is 5.  Which 
means if more than 5 options are present, a ‘more’ link will be displayed.  To 
override the default value of 5 for display of any filter, include the maximum number 
of rows to display between parentheses, in your results template, as follows:

$FLT_STO(4)
$FLT_MNF(8)



Following is the example template code used to display the output as shown in 
figures 1 & 3 above:

Figure 4

Sort Options Configuration

You can also provide for your users the ability to sort their search results by any XML 
indicator in your extract file.  In this manner, in addition to the default option for 
sorting results by rank / relevance, your visitors can choose to re-order their results 
for display by any pertinent XML indicator you specify (see figure 5 below).

C
u

st
o

m
S

o
rt

O
p

ti
o
n

s

Figure 5



The search template HTML corresponding to the highlighted sort options in figure 5 
above, would be constructed as follows:

Figure 6

Essentially, what is created is an IF/ENDIF block corresponding to the number of 
sort options to display, with the ELSE block being set to the default sort option 
(typically rank / relevance).

Each IF block starts with the evaluator object tag:

$LGK_CMPQS_IF(nsrt,XXX_(A,N)_(0,1))

This instructs FusionBot to analyze the querystring URL looking to see which sort 
option has been selected in order to determine which IF block of HTML should be 
printed.  

CMPQS, in the object tag above stands for “Compare Query String”.  The value 
‘nsrt’,  $LGK_CMPQS_IF(nsrt,TTL_A0), tells FusionBot which variable to look for in 
the querystring, followed by TTL_A0, $LGK_CMPQS_IF(nsrt,TTL_A0), which tells 
FusionBot what do if the variable instructed to look for (nsrt) is set equal to this 
value (TTL_A0).  When the condition is met, that is, when the sort option TTL_A0 
has been clicked, the corresponding HTML in the applicable IF block will print, and 
the results will be sorted accordingly.

Thus, in the above example, the querystring sent to FusionBot would look similar to:

http://ssXXX.fusionbot.com/b/q?sn=123456&nsrt=TTL_A0

In analyzing the querystring, FusionBot sees that the value of ‘nsrt’ is set to 
‘TTL_A0’, and thus the HTML IF block where this condition has been met is printed.  
For the block where the condition is met, this means that the results have been 
sorted by the 3-letter indicator passed in, and thus, that particular indicator would be 
the only sort option NOT surround by an HREF link, signifying that this is the active / 
selected sort option (i.e. it is not clickable).

http://ssxxx.fusionbot.com/b/q?sn=123456&nsrt=TTL_A0


In the syntax example:  $LGK_CMPQS_IF(nsrt,XXX_(A,N)_(0,1))

Which translated to: $LGK_CMPQS_IF(nsrt,TTL_A0), in our first instance, the 
option A or N, as specified via $LGK_CMPQS_IF(nsrt,XXX_(A,N)_(0,1)), tells 
FusionBot whether to sort the results either Alphabetically, or Numerically, and the 
option $LGK_CMPQS_IF(nsrt,XXX_(A,N)_(0,1)), tells FusionBot whether to sort 
the results in ascending (0), or descending (1), order.

Thus, putting it all together:

$LGK_CMPQS_IF(nsrt,TTL_A0), tells FusionBot to analyze the querystring, look 
for the variable named ‘nsrt’, and when equal to TTL_A0, print that which is in the 
corresponding HTML block.

Similarly, within each HTML IF block, you will see syntax such as:

<li><a href="/b/q?$LGK_CNEXT(nsrt)&nsrt=STO_A0">Store</a></li>

This constructs the clickable link for each sort option, again, instructing FusionBot 
how to sort the results when the applicable link is clicked.  In the above example, 
when the link labeled ‘Store’ is clicked, the results will be sorted by the XML indicator 
‘STO’, alphabetically and in ascending order.

The value $LGK_CNEXT(nsrt) is a reserved object tag that dynamically populates 
the link with any additional / necessary querystring parameters (minus the currently 
selected sort option) for the query to function properly and MUST be included. The 
‘/b/q?’  string points to the FusionBot ‘cgi-bin’ and ‘query’ program accordingly. 

For sorting by any custom XML tag, the value of the ‘nsrt’ parameter MUST be the 3-
letter indicator, followed by an underscore, followed by the sort order options.  
FusionBot is able to discern sorting by a custom XML tag, versus sorting by default 
rank, when the value of ‘nsrt’ is set equal to 0 (sort by rank), versus set equal to a 
3-letter indicator, followed by an underscore, followed by the sort options (A/N_0/1).

Conclusion
If you have any additional questions concerning any of the information contained 
within this document, don’t hesitate to send an inquiry to our support staff, as we 
are always more than happy to help.

http://www.fusionbot.com/support.asp

